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Abstract—It has recently been shown that arbitrary 

polyphase codes can be implemented as FM waveforms through 

a radar-specific version of the Continuous Phase Modulation 

(CPM) framework. These waveforms, denoted as Polyphase-

Coded FM (PCFM) can be viewed as a first-order hold 

representation of the phase function (where traditional codes 

represent a zero-order hold). Here we examine higher-order 

representations as a means to achieve further variety over the 

space of possible waveform functions one may optimize.  

Specifically, the relationships between the first, second, and 

third-order representations are considered, along with the 

optimization of the coding for each. 

I. INTRODUCTION  

The combination of increasing demand for radio frequency 
(RF) spectrum [1,2] and the push for greater design freedom, 
enhanced sensitivity, and new sensing modalities has yielded 
myriad contributions to the burgeoning field of waveform 
diversity [3,4,5].  While there has been considerable work on 
the design of radar codes (e.g. [6] and references therein) it is 
only recently that the implementation of arbitrary codes has 
been realized in a power and spectrally efficient manner via a 
radar-specific form of Continuous Phase Modulation (CPM) 
[7]. This scheme, denoted as polyphase-code FM (PCFM), 
converts codes into FM waveforms in a manner akin to first-
order hold in the phase domain. Here this implementation is 
generalized to higher-order representations to further expand 
the possible design space for optimization. 

In essence, this generalization enables new ways in which 
to represent nonlinear FM (NLFM) waveforms where, in 
theory, there are infinite possible continuous phase functions 
that may exist, even for a finite pulse width and bandwidth.  
Because they can provide low range sidelobes without the need 
for amplitude tapering and are naturally well-suited to high-
power transmitters, many different approaches have emerged 
for the design of NLFM waveforms [8-13]. However, given the 
growing ubiquity of high performance computing and parallel 
processing it stands to reason that NLFM waveforms based 
upon some underlying coding representation may provide the 
means with which to achieve unprecedented performance by 
searching the high dimensional parameter space [14, 15]. As 
such, of particular interest is the determination of new and 
useful mappings from a discrete code into a continuous FM 
waveform. Recent contributions include [16] based on a 
constellation-constrained version of CPM that leverages the 
Laurent decomposition and [17] that demonstrates the use of 
parameterized Bezier curves for FM waveform design.  

The higher-order PCFM representation described here was 
inspired by the polynomial phase functions proposed by 
Doerry [13].  Table I provides a general comparison between 
the different orders (1

st
 and higher) and also includes polyphase 

codes themselves as a notional zero-order representation. 

TABLE I.  WAVEFORM REPRESENTATIONS 

Waveform 

representation 

Equivalent approaches in radar waveform 

generation 

0th order Discrete codes (e.g. P3); abrupt phase transitions 

1st order PCFM via [7]; linear phase trajectories 

2nd order LFM and NLFM; quadratic phase trajectories 

3rd order & Higher Higher orders of NLFM 

 

II. HIGHER-ORDER PCFM IMPLEMENTATIONS 

In [7] the CPM implementation used for power and 

spectrally efficient communications was modified to enable 

the implementation of arbitrary polyphase codes as FM radar 

waveforms. The resulting polyphase-coded FM (PCFM) 

scheme is inherently a first-order representation that can be 

expressed as  
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where n  for 1, 2, ,n N  are a first-order code that may or 

may not be derived from a zero-order polyphase code of length 

N + 1, 1( )g   is a shaping filter as defined in [7] to have time 

support on [0,Tp] for pulse width T = NTp, and 1,0  is the initial 

phase for this first-order representation. 

If we now define the first-order coded function ( )   as 
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which represents the time-varying frequency of the waveform, 
then (1) becomes 
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t
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Using this format, general expressions for second-order and 
third-order representations can readily be defined as 
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respectively, where 
2,0  and 

2,0  are the initial phase and 

frequency for the second-order implementation and 
3,0 , 

3,0 , 

and 
3,0  are the initial phase, frequency, and chirp-rate for the 

third-order implementation. The term ( ')b   in (4) is the 

second-order coded function defined as 
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representing the time-varying chirp-rate where nb  for 

1, 2, ,n N  is the second-order code and 2 ( ')g   the 

associated second-order shaping filter.  Likewise,  
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is the third-order coded function representing time-varying 

chirp-acceleration according to nc  for 1, 2, ,n N  and 

3( '')g   the third-order shaping filter. 

Further, it is possible for these implementations to be 
combined. For example, the first-order coding may be 
incorporated into the second-order implementation as 
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Likewise, both first and second-order coding can be 
incorporated as 
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into the third-order implementation. In the same spirit as the 
“over-coding” scheme introduced in [15], there is a richness to 
this higher-order framework that provides the possibility for 
different phase functions to be realized, thus enabling greater 
design freedom. 

It is important to note that additional care must be taken 
when using higher-order coding. For example, in [7] it was 

stated that the shaping filter 1( )g   should integrate to unity at 

the end of its time support on [0,Tp] and that the permissible 

values of n  exist on [‒,] (though the latter was relaxed 

somewhat in [15]). The combination of these factors limit the 

degree of phase change (to ||) over the time interval Tp , which 
subsequently serves to constrain the (angular) bandwidth to 
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or simply B/2 Hz, where we have used the relationship 

pT NT  and the fact that the time-bandwidth product BT is 

well approximated by N. Note that (10) is a baseband 
expression. Imposing this same constraint using the second and 
third-order representations requires that the compounding 
effect of the additional integration stages be taken into account, 

which impacts the selection of the coding values for nb  and nc  

as well as the associated shaping filters 
2 ( )g   and 

3( )g  . 

To understand the relationship between the first, second, 
and third-order representations consider how each could be 
used to implementation a standard LFM waveform that is 
known to possess a constant chirp-rate.  For 3-dB bandwidth B 
and pulse width T, the LFM chirp-rate is simply 

LFM

B

T
            (11) 

and the time-bandwidth product is 2
LFMBT T . Likewise, 

since the LFM phase is known to be quadratic in time this 
waveform clearly requires a second-order component to be 
perfectly represent (a first-order LFM approximation was 
presented in [7]).  Assuming an up-chirp at baseband, the 

initial frequency is 
2,0 / pT    and the final frequency at 

the end of the pulse is / pT , with the initial phase 
2,0  being 

arbitrary. Thus the LFM waveform traverses 2 / pT  of angular 

bandwidth, or 1/ /pB T N T  , and so from (11) we obtain 

2
LFM / nN T b    for use with the shaping filter 

2 ( ) rect[0, ]pg T   in (6).  Note that, as one would expect, nb  is 

a constant to realize a LFM waveform. 

Now consider the LFM implementation using the third-
order representation of (5) and (7). The most straightforward 

way would be to set the chirp-rate as 2
3,0 LFM /N T    and 

the initial frequency as 
3,0 2,0 / pT      with initial phase 

3,0  again arbitrary, which is simply the second-order 

representation above.  Alternatively, note that the derivative of 

the rectangular shaping filter with time support on [0, ]pT  

results in a positive unit impulse function ( '')   at '' 0   and 

a negative unit impulse function ( '' )pT    at '' pT  . 

Therefore, based on the construction in (7) it is observed that 
all the impulses will cancel except for the first positive impulse 
at the beginning of the pulse and last negative impulse at the 
end of the pulse. As a result, (7) for the LFM waveform can be 
simplified to 

2
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with 
3,0 0   and the other parameters unchanged. As shown 

in Fig. 1, this third-order implementation has an identical 
spectral content to that of the second-order implementation 
above, as expected.  



 
Figure 1.  Spectral content of 2nd order and 3rd order 

implementations of LFM with BT = 64 

A nearly identical relationship exists between the first-order 
and second-order representations to implement a piece-wise 
approximation to LFM. The point of this overly elaborate 
means of implementing a common waveform is that different 
order representations can map into the same waveform, albeit 
through different constructions. Conversely, and more 
importantly, these higher-order components provide new phase 
trajectories which can be exploited as additional degrees-of-
freedom in waveform design without necessarily increasing the 
time-bandwidth product (again, in the same spirit as [15]). 

III. HIGHER-ORDER PCFM OPTIMIZATION 

There are many ways in which to search the high-

dimensional space parameterized by the PCFM codes n , nb , 

and nc . In [14] the performance diversity paradigm was 

introduced for the first-order representation in which the 
complementary nature of the cost functions for peak sidelobe 
level (PSL), integrated sidelobe level (ISL), and the shape of 
the power spectral density (because it is the Fourier transform 
of the autocorrelation) were used to avoid local minima in a 
greedy search approach to thereby discern waveforms with 
quite low sidelobes. The spectrum cost function takes the form 
of a frequency template error (FTE) relative to a Gaussian 
power spectral density [14]. This same performance diversity 
approach is also adopted here to optimize the second and third-
order representations, though these also require the initial 
frequency and chirp-rate to be established since, unlike the 
arbitrary initial phase, these factors do have an impact upon 
waveform performance.   

Figures 2-4 compare the autocorrelations, spectral content, 
and instantaneous frequency for 1

st
 and 2

nd
 order optimized 

waveforms of BT = 64. The 2
nd

 order waveform is observed to 
achieve slightly more than 2 dB lower PSL than the 1

st
 order 

(Fig. 2), though the 2
nd

 order also realizes a slightly slower 
spectral roll-off (Fig. 3) as a result of the increased spectral 
excursion at the ends of the pulse (Fig. 4).   

 
Figure 2.  Autocorrelations of 1st and 2nd order optimized waveforms 

 
Figure 3.  Spectral content of 1st and 2nd order optimized waveforms 

 
Figure 4.  Instantaneous frequency of 1st and 2nd order optimized waveforms 



Figures 5-7 depicts the comparison between 1
st
 and 3

rd
 

order optimized waveforms. Here it is observed that the 1
st
 

order waveform is superior to this particular 3
rd

 order 
waveform in terms of PSL by more than 5 dB (Fig. 5) with 
roughly the same spectral content (Fig. 6) as expected by the 
mostly similar frequency excursion (Fig. 7).   

 
Figure 5.  Autocorrelations of 1st and 3rd order optimized waveforms 

Table II provides the PSL and ISL values obtained by 
optimizing BT = 64 waveforms for first, second, and third-
order representations of (1), (4), and (5).  It is also instructive 
to compare these results with the  hyperbolic FM (HFM) 
waveform for which a PSL bound (specific to HFM) can be 
computed to be ‒39.1 dB as a function of BT = 64 [10,14]. 
From the table, 2

nd
 order provides the lowest PSL and ISL, 

followed by 1
st
 order, with both surpassing the benchmark of 

the HFM bound on PSL. In contrast, 3
rd

 order does not surpass 
the bound and likewise for 4

th
 order (not shown). It can thus be 

inferred that optimization of the time-varying chirp rate (2
nd

 
order) is preferable from a general performance standpoint. 

 
Figure 6.  Spectral content of 1st and 3rd order optimized waveforms 

 
Figure 7.  Instantaneous frequency of 1st and 3rd order optimized waveforms 

TABLE II.  PSL AND ISL FOR 1ST, 2ND
 AND 3RD

 ORDER OPTIMIZED 

WAVEFORMS FOR BT = 64 

 1
st
 order 2

nd
 order 3

rd
 order HFM bound 

PSL (dB) ‒41.91 ‒44.39 ‒36.25 ‒39.1 

ISL (dB) ‒57.38 ‒59.34 ‒53.86 N/A 

 

For the optimization results shown above, the 1
st
 order 

representation was initialized so the n  values approximate an 

LFM, which has been found to yield good final results due to 
consolidation of waveform ambiguity in the range-Doppler 
ridge.  The 2

nd
 order optimization permitted initialization with 

the scaled inverse of Taylor window coefficients (Fig. 8) 
corresponding to ‒40 dB range sidelobes. The piece-wise 
difference of these coefficients (approximating the derivative) 
was used for 3

rd
 order initialization. 

 
Figure 8. Initial code versus optimized values for the 2nd order PCFM 

waveform 



IV. MIXED-ORDER PCFM OPTIMIZATION 

Using (8) and (9) the different implementation orders can 
be combined for optimization, with the resulting increase in 
available degrees-of-freedom expected to further improve 
performance. We consider both sequential and joint 
optimization of the 1

st
, 2

nd
, and 3

rd
 orders with BT kept fixed at 

64 for the sake of comparison. Sequential optimization is 
accomplished by selecting a particular order (say the 2

nd
) and 

performing optimization until no further improvement is 

possible, freezing the associated coding values (here nb  for 

1, 2, ,n N ) and then optimizing the waveform with the 

inclusion of another order (1
st
 or 3

rd
).  At the first stage the 

code values for the latter order(s) to be optimized are set to 0.  
Sequential optimization is clearly more computationally 
efficient than joint optimization, though the latter can generally 
be expected to yield waveforms with lower sidelobes. 

Figures 9-11 depicts the autocorrelations, spectral content, 
and instantaneous frequency of the jointly optimized 
waveforms.  Compared the best previous case (2

nd
 order) in 

Fig. 2, the use of multiple orders certainly provides enhanced 
sensitivity.  Also, while the instantaneous frequency in Fig. 11 
still possesses the general shape one expects from a good 
NLFM waveform, it is important to note the small 
perturbations that result from optimization and that provide 
some of the performance enhancement. 

Table III provides the PSL and ISL values obtained when 
performing sequential and joint optimization on the mixed-
order implementations in (8) and (9).  It is observed that joint 
optimization is nominally better than sequential optimization, 
though perhaps not enough so to justify the increased 
computation requirement.  Based on different combinations it 
was also observed that the preferred ordering for sequential 
optimization is to begin with 2

nd
 order, with little difference 

regarding whether 1
st
 or 3

rd
 order occurs next.  Comparing to 

the best results in Table II (2
nd

 order), it is also noted that the 
mixed-order representations yield improvement of roughly 4 
dB in PSL and 6 dB in ISL. Thus there is clearly a benefit to 
combining the orders.  Further, there is observed to be a 
benefit, albeit small, to using the 3

rd
 order as it provides a PSL 

improvement of 0.20 dB and 0.22 dB for the sequential and 
joint optimization results, respectively. 

TABLE III.  PSL AND ISL FOR SEQENTIAL AND JOINT OPTIMIZATION OF 

MULTIPLE ORDERS FOR BT = 64 

 
Seq. 2nd & 

1st orders 

Joint 2nd & 

1st orders 

Seq. 2
nd

, 1
st
, 

& 3
rd

 orders 

Joint 2
nd

, 

1
st
, & 3

rd
 

orders 

PSL (dB) ‒48.25 ‒48.43 ‒48.45 ‒48.65 

ISL (dB) ‒64.25 ‒64.83 ‒64.60 ‒65.47 

 

 
Figure 9.  Autocorrelations of jointly optimized waveforms via (8) and (9) 

 
Figure 10.  Spectral content of jointly optimized waveforms via (8) and (9) 

 
Figure 11.  Instantaneous freq. of jointly optimized waveforms via (8) and (9) 



V. CONCLUSIONS 

In this paper, we have extended the 1
st
 order representation of 

polyphase-coded FM (PCFM) to higher orders so as to exploit 
the additional degrees-of-freedom these higher orders provide 
without any increase in time-bandwidth product. Simulation 
results have shown that optimization of the 2

nd
 order 

representation yields about 2.5 dB lower PSL compared to the 
previous 1

st
 order optimization. Further, an additional 4 dB 

PSL improvement is observed when 1
st
 and 2

nd
 orders are 

optimized jointly, with 3
rd

 order providing a small additional 
enhancement.  While joint optimization of multiple orders 
does, as expected, result is better performance than sequential 
optimization of the different orders, the difference is nominal 
thus implying that the lower computational requirement for 
sequential optimization may be preferable when the goal is to 
design high time-bandwidth product waveforms. 
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